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shock has a large radius of curvature compared to the
characteristic, 1D reaction-zone length and that the im-We give an extension of the level set formulation of Osher and

Sethian, which describes the dynamics of surfaces that propagate portant dynamic time scale is slow, compared to the transit
under the influence of their own curvature. We consider an exten- time for particles through the reaction zone [1, 8]. The
sion of their original algorithms for finite domains that includes simplest form of the intrinsic surface evolution equation,boundary conditions. We discuss this extension in the context of a

derived from DSD-theory, obtains a relation for the nor-specific application that comes from the theory of detonation shock
dynamics (DSD). We give an outline of the theory of DSD which mal detonation shock velocity, Dn, as a function of the
includes the formulation of the boundary conditions that comprise local total shock curvature, k 5 k1 1 k2 (the sum of the
the engineering model. We give the formulation of the level set principle curvatures and twice the mean curvature).
method, as applied to our application with finite boundary condi-

In our notation, the shock normal is chosen to point intions. We develop a numerical method to implement arbitrarily
the direction of the unreacted explosive and the curvature,complex 2D boundary conditions and give a few representative

calculations. We also discuss the dynamics of level curve motion k, is defined to be positive when the shock is convex. We
and point out restrictions that arise when applying boundary call this intrinsic (material dependent) relation between
conditions. Q 1996 Academic Press, Inc. Dn and k, the Dn 2 k relation. Physically, positive curvature

corresponds to a diverging detonation in which the shock
is convex shape, and Dn is below the plane CJ value, DCJ,1. INTRODUCTION
for k . 0. When the curvature has the opposite sign,
k , 0, the shock has a concave shape and Dn lies above1.1. Detonation Shock Dynamics (DSD)
DCJ. The physical justification for modeling the shock dy-

Detonation shock dynamics (DSD) is an asymptotic the- namics in such a simple way is as follows.
ory that describes the evolution of a multi-dimensional, In the streamwise direction, the reaction zone that sup-
curved, near-Chapman–Jouguet (CJ) detonation shock in ports the detonation resembles the classical ZND struc-
terms of an intrinsic evolution equation for the shock sur- ture. Although the reaction zone is not strictly steady for
face. A complete mathematical model of detonation [14], multi-dimensional detonation, it continues to have the
consists of the compressible Euler equations, an equation property that the shock is only influenced by the subsonic
of state with a reaction progress variable and a reaction-

region between the sonic curve and the detonation shock
rate law. These equations admit a one-dimensional (1D),

curve. This insulation of the shock from the vast region
steady traveling wave solution that corresponds to a deto-

that follows the reaction zone leads, in the limit of weak
nation with a distributed, finite width reaction zone. The

shock curvature (measured relative to the distance from
structure calculation for this zone consists of a system of

the shock to the sonic curve), to the result that the normal
ordinary differential equations (ODEs) that contain a criti-

detonation speed Dn is a function of the shock curvature
cal point within the zone. These, together with the shock

k (under the assumption of sufficiently slow dynamics).
conditions, serve to define the normal speed of the detona-

Although the shock is insulated from the far-field flow
tion, DCJ. The CJ detonation is the detonation whose speed

in the streamwise direction, the reaction zone provides a
corresponds to a sonic state at the end of the reaction-

path by which disturbances can propagate in the direction
zone. The steady solution is called the ZND solution.

transverse to the shock-normal direction. In particular, the
The shock evolution equations of DSD-theory are de-

disturbance generated at the edge of the explosive, where
rived from an asymptotic theory that assumes the curved

the high-pressure detonation products expand to low pres-
sure, propagates through the reaction zone in the trans-
verse direction, leading to a substantial decrease in the1 Corresponding author.
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pressure of the reaction zone, even far from the edge. More
than any other influence, these lateral rarefactions from
the edge of the explosive control the speed and hence the
shape and location of the detonation shock.

For the purpose of this paper we assume a fundamental
Dn 2 k relation exists, one that passes through k 5 0 at
Dn 5 DCJ and is monotonic, for both positive and negative
curvatures. Details of how to obtain a Dn 2 k relation can
be found elsewhere [1, 8, 20]. The extension of the
Dn 2 k for negative curvature has some experimental and
numerical confirmation [4, 5]. The dynamics of this surface
then is wholly described as propagating under the influence
of its curvature. In [2], Osher and Sethian developed a
numerical method to solve for the motion of such surfaces,
originally dubbed PSC for ‘‘propagation of surfaces under
curvature.’’ Now the methods are more commonly known
as level set (LS) methods. We turn to a brief description
of their work next.

1.2. The Level Set Algorithm of Osher and Sethian

Osher and Sethian [2] discussed a novel and powerful
embedding concept that has an underlying simplicity for
the calculations that we are concerned with in this paper
and for front tracking in general. Specifically they consid-
ered the motion of a surface under the influence of a FIG. 1. Schematic of level surface and the projection of level-curves
Dn 2 k relation. They pointed out some of the difficulties in the x, y-plane at an instant in time. Also shown are the normal and
of attempting a numerical solution of surface dynamics tangent to the level curve, c 5 0.

that uses algorithms based on surface parameterizations.
These difficulties include the corresponding loss of accu-
racy due to the bunching of nodes in regions where the surface of physical interest is found by taking a subset of

the field, specifically a constant value of a field functionfront experiences a convergence, which results in a loss of
stability of the method. Also, in regions of expansion, which defines a level-contour in 2D or a level-surface in 3D.

Thus for a 2D application, the level curves are embedded innodes diverge, and new nodes must be added to maintain
stability. Rezoning is thus an essential feature of such meth- 2D field, and for 3D, the level surfaces are embedded in

a 3D field. In particular, one solves for the dynamics ofods. Furthermore, there is the logical complexity in the
programming required to handle complex and, perhaps, the level curves, c 5 const where all the level curves obey

the Dn 2 k relation. The level curves of physical interestunforeseen interactions, when sections of shock merge or
break apart. for the application are the ones that evolve from the initial

configuration of the physical problem, where the level-For a physical simulation that uses an underlying surface
parameterization method, a separate and independent de- constant is used to identify the physically relevant surface,

during its evolution. The curve/surface of interest c 5 0scription of the topology of each disparate segment of the
shock surface must be carried along with all the rules that is then the object of a contour search of the full field of

c(x, y, z, t).give the details for extinguishing old segments, and creating
new ones. A programmer who deals with the issues of Figure 1 shows a time snapshot of a representative 2D

level surface, c(x, y, t) and its projection onto the x, y-plane.trying to write reasonably robust code for engineering ap-
plications must confront a difficult task with these methods. The embedding relies on the contouring being uniquely

defined, such that a single value of c(x, y, t) is obtainedThese issues are especially important, when the tracking
algorithm is to be used as a subroutine in part of a larger for each point (x, y) at a given instant of time.

While it might seem that additional computation is re-application code that solves problems with great system
complexity. quired to represent a 2D surface by a solving for a 3D

field, in fact, the gain in logical simplicity leads to computa-The LS methods use instead a formulation where the
surface of interest is embedded in a field of one higher tions that are very efficient and accurate. These advantages

easily override any perceived increase in computationaldimension, in the physical space of the application. The
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cost. We came to this conclusion in the course of devel- 2. DETONATION SHOCK DYNAMICS
oping numerical methods for our applications, having first

As mentioned in the Introduction, DSD is the nameused surface parameterization methods in 2D, [6] and hav-
given to a body of multi-dimensional theory that describesing realized the limitations of our formulation and methods
the dynamics of ‘‘near-Chapman–Jouguet’’ detonations.for our 3D applications.
Its name follows from Whitham’s theory of ‘‘geometricalIn engineering applications for explosive materials,
shock dynamics,’’ because of the similarity of the mathe-boundaries represent interfaces between the explosive and
matical structure of the theories. The engineering applica-its confinement at the edge. The typical application has a
tion of DSD was originally set forth in two papers [20, 8].charge of explosive material of finite dimension. At the
The simplest result of DSD theory is that under suitableboundaries of the charge, the explosive is adjacent to inerts
conditions, the detonation shock in the explosive propa-or other reactive material. Detonation propagation from
gates according to the simple formulainitiating centers into space wholly comprised of unreacted

explosive is of interest, but it can be regarded as a special,
Dn 5 DCJ 2 a(k), (1)ideal case. Therefore, the boundary conditions at the inter-

faces represent the confinement of the detonation shock
since they (along with the initial conditions) determine the where Dn is the normal velocity of the shock surface, DCJ
evolution of the detonation shock. For our purposes, the is the 1D, steady, Chapman–Jouguet velocity for the explo-
LS method must address physical boundary conditions and sive, and a(k) is a function of curvature k that is a material
fit neatly into existing engineering code infrastructures. property of the explosive. Figure 2 illustrates the sign of

the curvature for a typical detonation shock. A sketch of1.3. Outline of the Paper
a typical Dn 2 k relation is shown in Fig. 3.

In Section 2, we present a self-contained discussion of
the engineering application of DSD, which includes the 2.1. Boundary Conditions
formulation of the boundary conditions. In particular we

We have formulated a set of model DSD boundary con-include very specific Dn 2 k relations and boundary condi-
ditions that involve the angle that the local shock normal,tions that are relevant in explosive engineering problems.
n̂s, makes with the outwards pointing normal vector of theNonetheless, our formulation here is quite general.
boundary, n̂b which we refer to as g. Equivalently g is theIn Section 3, we give a brief explanation that derives
angle between the tangent to the edge and the tangent tothe PDE for the LS function in the interior of the explosive
the shock. See Fig. 4. A physical justification for the DSDdomain, as applied to our applications with finite bound-
angle boundary condition will be given next, followed byaries. We describe the numerical algorithm that is used
a summary of the model boundary conditions.(following Osher and Sethian for the most part) and in

The condition to be applied depends on the flow typeparticular we discuss in detail the interior differencing,
as witnessed by an observer riding with the point of inter-initial conditions, the differencing used for the boundary
section of the local shock and the edge. The boundaryconditions and extensions to 3D. Also, the concept of a
conditions are formulated by an analysis of the local singu-‘‘burn table’’ is introduced, which is most useful for explo-
larities admitted by the Euler equations [21] and the resultssive and possibly other applications, when it is known that
are summarized in this section. The flow type is character-the front passes, at most, one time past any fixed, Eulerian
ized by the local sonic parameter, S , evaluated at the shockpoint. In Section 4, we discuss the numerical stability and
in the detonation reaction-zone and as measured by anaccuracy of the scheme.
observer moving with the point of intersection of the deto-In Section 5, we present a series of examples found
nation shock and the material interfacein an explosives engineering problem. We examine the

response of an initially planar CJ detonation to the three
S ; C2 2 (Un)2 2 D2

n cot2(g), (2)most common types of flows generated by the interaction
of detonations with the edge of an explosive. The three
problems are: (1) the sudden loss of confinement at a where C is the sound speed in the explosive, Un is the

explosive particle velocity in the shock-normal direction,straight edge (referred to here as the ratestick problem);
(2) the formation of a ‘‘Mach’’ reflection when a detonation and Dn is the detonation normal speed. When S , 0, the

flow is locally supersonic at the edge and no boundaryenters a converging channel; and (3) the diffraction of a
detonation produced when entering a diverging channel. condition is applied. The application of no boundary condi-

tion is, in practice, the application of a continuation bound-Finally, in Section 6, we discuss some formal mathematical
issues regarding the nature of the embedding of the level- ary condition, where information flows from the interior

to the exterior of the domain. More will be said about thecurves and their relative motion under the action of bound-
ary conditions. numerical implementation of the continuation boundary
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FIG. 2. A snapshot of the x, y-plane, showing a diverging and a converging detonation. For a diverging detonation, the transverse dimension
of the region of chemical-energy release is smaller than the dimension of the region of shock surface that it supports (the detonation speed falls
below DCJ). For a converging detonation the reverse is true and the detonation speed exceeds DCJ.

condition in Section 3.3. When S . 0, the flow is locally provides to the explosive. The shock reflected into the
explosive does not influence the detonation shock. As thesubsonic and the presence of the edge influences the reac-

tion zone. The form of the boundary condition for the angle g is increased to the value gs, where S 5 0, the flow
in the explosive turns sonic and therefore can sense theS . 0 case is determined by the properties of the inert

material that is adjacent to the explosive. degree of confinement that the adjacent inert provides.
Note that gs is a constant in our model, given by theThe problem geometry and the various cases, supersonic,

sonic, and subsonic, that are modeled correspond to a explosive equation of state.
Figure 6 shows two cases, labeled as 1 and 2, that corre-steady flow in the reference frame of the shock/edge inter-

section point. Figures 5–7 show instantaneous time snap- spond to different degrees of confinement provided by the
inert. For these cases, the pressure decreases towards theshots of the interaction between the explosive and inert.

The explosive induces a shock into the inert (labeled inert right of the explosive sonic locus. Case 1 corresponds to
weak confinement, for which the pressure induced in theshock), which typically generates a reflected wave into the

explosive (labeled either the reflected shock or the limiting inert is considerably below the detonation pressure at the
edge. The influence of the confinement propagates in thecharacteristic, depending on whether the reflected wave is

a shock or a rarefaction, respectively). explosive no farther to the left than the limiting characteris-
tic labeled 1. The subsonic part of the reaction zone re-Figure 5 corresponds to a supersonic flow, S , 0. As

previously mentioned, no boundary condition is applied mains totally unaffected by the confinement and the flow
remains sonic at the shock/edge intersection point. Theirrespective of the degree of confinement that the inert
detonation propagates as if it were totally unconfined.

As the degree of confinement is increased further, the
drop in pressure in going from the explosive to the inert
becomes less, until at some critical degree of confinement
the influence of the inert extends up to the limiting charac-
teristic labeled 2. At this critical degree of confinement, the

FIG. 3. The Dn 2 k relation for a typical condensed phase explosive
after Bdzil et al.’s calibration of PBX9502 [4]. FIG. 4. Definition of the angle, g, and the normals, n̂s and n̂b .
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explosive/inert pair. It is easily calculated from a shock
polar analysis, assuming no reflected wave in the explosive.

2.2. Summary

In summary, the boundary interaction has the following
properties: (i) When the flow in the explosive is supersonic
(i.e., g , gs), the continuation (outflow) boundary condi-
tion is applied. This corresponds to extrapolating the front
to the exterior, without changing the angle at the boundary.
(ii) When the flow turns sonic g 5 gs, two cases can arise:
(a) The pressure induced in the inert is below that immedi-
ately behind the detonation shock and the confinementFIG. 5. DSD boundary conditions. A snapshot of the x, y-plane show-
has no influence on the detonation. The sonic boundarying the supersonic type of explosive/inert boundary interaction. The mag-

nitude of g controls the type of interaction that occurs. Figure 5 corre- condition is applied, g 5 gs; (b) The pressure induced in
sponds to a supersonic flow in the explosive, measured relative to an the inert is above that immediately behind the detonation
observer riding with the shock/edge intersection point. shock. The angle g increases (i.e., g . gs) until the pressure

in the inert and explosive are equilibrated. This angle
g 5 gc is the equilibrium value for the angle and is regarded
as a material constant that is a function of the explosive/detonation continues to propagate as if it were unconfined.
inert pair. Thus the boundary condition recipe can be sum-Any further increase in the confinement destroys the sonic
marized as follows: (1) A continuation boundary conditionisolation of the reaction zone from the influence of the
is applied for supersonic flows and (2) when the flow be-confinement and leads to the case shown in Fig. 7.
comes either sonic or subsonic, g is bounded from aboveIf for the angle gs, corresponding to S 5 0, the pressure
by a critical angle gc (unique for each explosive/inert pair)induced in the confining inert part is greater than the pres-
that is determined using the above discussion.sure in the explosive, then the flow that develops is that

Figure 8 shows a time history of the evolution of theshown in Fig. 7. The reflected wave can now enter into
angle g(t) along the edge of confinement that correspondsthe subsonic part of the reaction zone. This results in an
to a typical application. Figure 8a shows a detonation inter-increase in pressure in the reaction zone and the concomi-
acting with an edge at three different times, t1, t2, t3. Attant increase of the normal shock velocity, Dn. The angle
time t1, the shock/edge intersection is highly oblique andg increases until the pressure in the inert and reaction
the supersonic (continuation) boundary condition applies.zones balance. Since the flow in the explosive is subsonic,
At time t2, it is assumed that the intersection angle firsta reflected shock is not generated in the explosive. The
becomes sonic, g 5 gs. If the confinement is heavy enough,value of g at the point of pressure equilibrium is gc. The

value of gc is a constant that depends only on the specific

FIG. 6. DSD boundary conditions. A snapshot of the x, y-plane show- FIG. 7. DSD boundary conditions. A snapshot of the x, y-plane show-
ing the subsonic type of explosive/inert boundary interaction. The magni-ing the sonic type of explosive/inert boundary interaction. The magnitude

of g controls the type of interaction that occurs. Figure 6 corresponds tude of g controls the type of interaction that occurs. Figure 7 corresponds
to a subsonic flow in the explosive, measured relative to an observerto a sonic flow in the explosive, measured relative to an observer riding

with the shock/edge intersection point. riding with the shock/edge intersection point.
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gating interfaces, and explain the numerical method used
to solve the resulting partial differential equation (PDE).

First, notice that a surface (or the shock in DSD) is a
subset with a dimension one lower than the space it travels
in. The LS method with applied boundary conditions solves
for a field function c(x, y, z, t) that depends on physical
space and time, and the field identifies surfaces of constant
values of c. The surface c(x, y, z, t) 5 0, is typically identi-
fied with the surface of physical interest. Therefore, the
computational task involves computing a field in space-
time, and then exhibiting the surface of interest by search-
ing for the special surface c 5 0. Since a level curve is given
by c(x, y, z, t) 5 const, it follows that its total derivative is
zero, i.e.,

­c

­t
1

­c

­x
dx
dt

1
­c

­y
dy
dt

1
­c

­z
dz
dt

5 0,

where the time derivatives, dx/dt and so on, are the compo-
nents of the surface velocity D, defined by that particular
level curve. In coordinate independent form the above
equation is

­c

­t
1 =c ? D(k) 5 0. (3)

FIG. 8. Time histories of shock/edge interactions for typical (a)
oblique interactions and (b) normal interactions. We choose the outward surface normal n̂ to be positive

in the direction of outward propagation. (In our physical
application the detonation shock propagates from the
burnt explosive towards the unburnt explosive and thea rapid acoustic transient can take place and a rapid adjust-
positive normal points into the unburnt material.) In terms

ment to the equilibrium value, gc, can occur. After that
of the LS function, the normal is given by n̂ 5 =c/u=cu.

adjustment, shown at t3 (say), the angle remains at g 5 gc The total curvature satisfies the relation
which corresponds to that for the explosive/confinement
pair. The right-hand portion of Fig. 8a shows the time

k ; k1 1 k2 5 = ? n̂. (4)history of the shock interaction at the edge. The value of
g(t) is determined by the solution for g , gs. Once gs is

Using D ? n̂ 5 Dn and =c ? n̂ 5 u=cu in (3) obtains aattained, a rapid jump to gc occurs and from then on
Hamilton–Jacobi-like equation for the LS function thatg 5 gc applies. This is shown in the right-hand portion of
we mainly use in the following discussions,the figure. If the confinement were sufficiently weak, no

jump to gc would be needed, and the angle would simply
remain at gs. This is shown by the broken line. ­c

­t
1 Dn(k)u=cu 5 0. (5)

Figure 8b shows a different scenario. It is assumed that
the detonation is initially flat and g 5 f/2. For heavy

The curvature k is simply related to the level set fieldconfinement, a rapid acoustic transition to g 5 gc is as-
by using the definition of the curvature from (4) and bysumed to occur and maintained from then on. If the con-
then carrying out the indicated differentiations. For exam-finement is sufficiently light, then the transition is from
ple, for two dimensions and for Cartesian coordinates, theg 5 f/2 to g 5 gs. Again this is shown in the broken line.
curvature is given by

3. THE LEVEL SET METHOD AND NUMERICAL
IMPLEMENTATION k 5

cxxc
2
y 2 2cxycxcy 1 cyyc

2
x

(c2
x 1 c2

y)3/2 . (6)

Here we outline the LS method, explain its application
and utility as a tool for computing the dynamics of propa- In summary, the shock (i.e., the surface of physical inter-
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est) is assigned the level c 5 0, while the unburnt material its four surrounding nodes, c n
i11, j, c n

i21, j, c n
i, j11, and c n

i, j21.
Define the usual forward and backward difference oper-has c . 0 and the burnt material has c , 0. A unique way

to specify c initially is to choose c 5 signed minimum ators
distance from the initial shock surface. Equation (5) is then
a partial differential equation for the LS function c that

D1
x c n

i, j 5
c n

i11, j 2 c n
i, j

Dx
, D2

x c n
i, j 5

c n
i, j 2 c n

i21, j

Dx
,is to be solved subject to its initial data.

The solution of the PDE with initial and boundary condi-
tions, generates the field c(x, y, z, t), and the location of

D1
y c n

i, j 5
c n

i, j11 2 c n
i, j

Dy
, D2

y c n
i, j 5

c n
i, j 2 c n

i, j21

Dy
.the shock is then simply found by a search for the level

surface c 5 0. This is easily done by creating a table of
arrival times of the shock across the computational grid. Next we combine these differences to define the first-order
We call this the burn table. Numerically generating a burn upwind difference,
table will be discussed in Section 3.5.

u=cu 5 [ f 1
x (D1

x c n
i, j) 1 f 2

x (D2
x c n

i, j)
(9)

3.1. Interior Differencing

1 f 1
y (D1

y c n
i, j) 1 f 2

y (D2
y c n

i, j)]1/2,Here we give a brief description of the numerical method
we use for solving the LS equation (5) on a fixed Eulerian
finite difference grid. For the interior algorithm, we follow where
Osher and Sethian [3]. The time advance of the LS
equation

f 1
x (a) 5 Ha2, if D1

x c n
i, j , 0

0, otherwise;
f 2

x (a) 5 Ha2, if D2
x c n

i, j . 0

0, otherwise;­c

­t
1 DCJ u=cu 2 a(k)u=cu 5 0 (7)

f 1
y (a) 5 Ha2, if D1

y c n
i, j , 0

0, otherwise;
f 2

y (a) 5 Ha2, if D2
y c n

i, j . 0

0, otherwise.is operator split into two steps. First, c is advanced using
the suboperator, LP, defined by the first and third terms
in Eq. (7). This is then followed by the advance for the

To achieve second-order spatial accuracy, a quadraticsuboperator, LH, defined by the first and second terms in
interpolant with three nodes is used. For each of the fourEq. (7). The motivation for this operator splitting is related
directions, there are two choices for the interpolant. Forto the fact that LH is a hyperbolic operator and LP is a
example, consider the linear interpolant between c n

i, j and‘‘nearly parabolic’’ operator. We consider these issues
c n

i11, j. To construct a quadratic interpolant, another node,more fully in Section 6. Different numerical methods are
either c n

i21, j or c n
i12, j, is used. The choice is made by pickingthus appropriate for these different type operators. The

the node which gives the smallest second derivative indifferencing for each of the three terms in (7) is now consid-
magnitude. If the second derivatives are of opposite sign,ered separately.
then the second-order correction is taken to be zero. ThisFor the time derivative, we use simple, first-order, for-
same procedure is used in the other three directions re-ward Euler differencing
sulting in the second-order scheme

­c

­t
5

c n11
i, j 2 c n

i, j

Dt
, (8)

u=cu 5Ff 1
xSD1

x cn
i,j 2

Dx
2

min mod(D2
xD1

xcn
i,j , D1

xD1
xcn

i,j)D
where i and j represent the x and y nodes and n represents
the time level in the usual way. Higher order Runge–Kutta 1 f 2

x SD2
xcn

i,j 1
Dx
2

min mod(D2
xD2

xcn
i,j , D1

xD2
x cn

i,j)D
type schemes can be used and have been derived in [2, 3].

The first-order spatial derivatives in the second term in
(7) are calculated using a combination of upwinding and 1 f 1

y SD1
ycn

i,j 2
Dy
2

min mod(D2
yD1

ycn
i,j , D1

yD1
x cn

i,j)D
essentially nonoscillatory (ENO) interpolation. In the fol-
lowing text, first-order interpolation is equivalent to first-
order differencing and second-order interpolation is equiv- 1 f 2

y SD2
ycn

i,j 1
Dy
2

min mod(D2
yD2

ycn
i,j , D1

yD2
y cn

i,j)DG1/2

,
alent to second-order differencing. Let us consider first a

(10)2D problem using upwinding and first-order interpolation.
We need to approximate u=cu, and, thus, cx and cy. First,
we construct four linear interpolants between node cn

i, j and where the min mod function is defined by
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3.3.1. Implementation of Angle Boundary Conditions

Of the three boundary conditions, angle boundary condi-min mod(a, b) 5 5
a, if uau # ubu, ab . 0

b, if ubu , uau, ab . 0

0, otherwise.
tions need the most attention. A class of physical boundary
conditions within DSD theory concerns detonation waves
interacting with inert boundaries were described in Section
2.1. For each inert–explosive pair, two angles are neededThe third term in (7) is essentially a diffusion term, and
to define the boundary conditions at an interface. Thesewe use second-order central differences to calculate k and,
are the sonic angle, gs, and the steady state angle, gc.thus, a(k). Central differences are also used to calculate

In general, the location of the inert–explosive interface,u=cu in this term.
where angle boundary conditions need to be applied, can
be quite complex. Unfortunately, it is not always simple3.2. Initial Conditions
to find a computational grid (body-fitted grid) whose

The LS function, c, must be defined initially at t 5 0, boundaries coincide with the physical inert–explosive in-
where c(x, y, t 5 0) 5 0 represents the initial shock locus. terface. Next we develop an internal boundary (IB)
We choose c(x, y, t 5 0) to be the signed distance from method to numerically treat these boundary conditions for
the initial shock locus, with c(x, y, t 5 0) positive in the arbitrarily complex interfaces on a uniform (D 5 Dx 5
unburnt material and c(x, y, t 5 0) negative in the burnt Dy) 2D Cartesian grid. In spirit, this method is similar to
material. Thus the normal, n̂, points into the unburnt mate- the Cartesian boundary method of Leveque [16] and others
rial. For example, two initially expanding cylindrical shocks [17, 18], although the mathematical boundary conditions
with radii 5 r located at (x1, y1) and (x2, y2) would be being applied are quite different. It will be shown that
given by angle boundary conditions involve spatial derivatives of

the LS function, c (which are similar to Neumann bound-
c(x, y, t 5 0) 5 min[Ï(x 2 x1)2 1 ( y 2 y1)2 2 r, ary conditions.) The mathematical boundary conditions,

and the corresponding numerical implementation areÏ(x 2 x2)2 1 ( y 2 y2)2 2 r],
given next.

First, define a new (non-evolving) level set function,
while two collapsing cylindrical shocks at the same location f(x, y), such that f(x, y) 5 0 at the inert–explosive inter-
and radii would be given by face. The function f(x, y) is defined at computational grid

points as fi, j (where again i and j correspond to the x-
location and y-location, respectively). We define f to bec(x, y, t 5 0) 5 max[r 2 Ï(x 2 x1)2 1 ( y 2 y1)2,
the signed distance function from the inert–explosive inter-

r 2 Ï(x 2 x2)2 1 ( y 1 y2)2]. face, with f negative in the explosive and f positive in the
inert. To enforce the angle boundary conditions on the
interior of the computational domain, an array of (i, j)3.3. Boundary Conditions
nodes near f 5 0 will be used. We call this array of nodes

Three types of boundary conditions have been imple-
the internal boundary (IB) nodes. These IB nodes are

mented into our LS formulation. These are symmetric (per-
found in the following manner. Sweep through the grid,

fectly reflecting), non-reflecting (inflow/outflow), and angle
and if at a (i, j) node fi, j . 0 and if at any of the eight

(physical) boundary conditions. The formulation uses two
surrounding nodes one of the following conditions is true,

levels of ghost nodes to enforce the particular boundary
fi11, j # 0, fi21, j # 0, fi, j11 # 0, fi, j21 # 0, fi11, j11 # 0,

conditions. The symmetric boundary condition is trivially
fi21, j21 # 0, fi21, j11 # 0, or fi11, j21 # 0, then the (i, j) node

satisfied by reflecting the values of c from the interior to
is an IB node. This is analogous to computationally finding

the exterior. For example if x 5 0 is a symmetry plane
the f 5 0 contour. This search for internal boundary points

and cn
0, j is at x 5 0, then c n

21, j 5 c n
1, j and c n

22, j 5 c n
2, j. is only done once at the beginning of the computation.

The non-reflecting boundary conditions are applied by
The angle boundary conditions will be enforced by speci-

using quadratic extrapolation. This is equivalent to keeping
fying ci, j at these IB nodes. Furthermore, the interior differ-

the second derivative along the normal to the boundary
encing of Section 3.1 only needs to be applied at nodes

as a constant. The upwinded first-order spatial derivatives
where fi, j # 0, since the others correspond to inert regions.

do not need to have ghost nodes, since they look in the
The inert–explosive interface normal, n̂b, at an IB node

proper direction. However, ghost nodes are used in the
is given by

calculation of the second-order derivatives and the curva-
ture at the boundary. For example, if non-reflecting bound-
ary conditions are applied at x 5 0, then c n

21, j 5 3c n
0, j 2 n̂b 5 nbxı̂ 1 nby Ê̂ 5

=f

u=fu
, (11)

3c n
1, j 1 c n

2, j, etc.
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at all IB nodes. In general, cP1
, cP2

, cP3
can be dependent

on IB nodes. For example, in Fig. 9, cP1
will be a linear

combination of the three interior values ci21, j21, ci21, j, ci, j21

and the IB node value ci, j. Therefore, (12) will result in a
system of linear equations, where the number of equations
and unknowns is equal to the number of IB nodes. This
system is solved by the following iterative method: View
(12) as ci, j 5 F1(ci, j). Start with an initial guess for each
cguess

i, j , say the value of ci, j at the old time step. Evaluate
F1(cguess

i, j ), and set

cnew
i, j 5 (1 2 w)cguess

i, j 1 wF1(cguess
i, j ), (13)

where w , 1 for the iterative method to converge. Repeat
(13) until max(ucnew

i, j 2 cguess
i, j u) , «D. The values w 5 0.9

and « 5 1023 work well and typically converge in 10 itera-
tions or less. Note that the number of equations being
solved iteratively is of the order (NxNy)1/2, where Nx and
Ny are the number of x and y grid points, so the algorithm

FIG. 9. Schematic of internal boundary condition stencil: d interpo-
is relatively inexpensive, compared to the interior scheme.lated stencil points; h internal boundary node (i, j); s point where

To check if an interaction at an IB node is subsonic orboundary condition is to be applied.
supersonic, an approximation for the angle, g, between
the shock normal, n̂s, and the inert–explosive interface
normal, n̂b, is needed. The vector, n̂b, is given from (11)

which is approximated by second-order central differences and the normal n̂s is given by
at IB nodes. For each IB node, a locally rotated orthogonal
stencil is defined which is lined up with the inert–explosive

n̂s 5
ch

Ïc2
h 1 c2

j

n̂b 1
cj

Ïc2
h 1 c2

j

t̂binterface normal, n̂b, and inert–explosive interface tangen-
tial unit vector, t̂b 5 nbyı̂ 2 nbx Ê̂. The coordinates associated
with the n̂b and t̂b directions are h and j, respectively. See

and therefore g is given byFig. 9. Since, the angle boundary condition will involve
spatial derivatives of the LS function, c, we need to know
values of c at the discrete points, labeled Pk, associated cos g 5 n̂s ? n̂b 5

ch

Ïc2
h 1 c2

j

. (14)
with each IB node. These points are given by

Approximations to the derivative terms in (14) areP1 5 (fi, j 2 D)n̂b , P2 5 (fi, j 2 2D)n̂b ,
needed at the point where the boundary condition is to

P3 5 (fi, j 2 3D)n̂b , P4 5 Dt̂b P5 5 2Dt̂b . be applied, see Fig. 9. Taylor series expansions reveal the
approximation

Values of c at these rotated stencil points, P1, P2, P3,
P4, P5, are given by second-order accurate bilinear interpo-
lation. At every timestep, the following algorithm is ap- ch 5

cP2
2 4cP1

1 3ci, j

2D
2

cP2
2 2cP1

1 ci, j

D2 fi, j , (15)
plied:

Step 1: Quadratically extrapolate c from the interior to where fi, j appears in (15) since it is the signed distance
the IB nodes along the n̂b direction. from the node (i, j) to the location where the boundary

condition is to be applied. See Fig. 9. A central differenceStep 2: Check if interaction at each IB node is subsonic
approximation to cj isor supersonic.

Step 3: Apply angle boundary condition to all IB nodes
which have a subsonic interaction.

cj 5
cP4

2 cP5

2D
. (16)

Quadratic extrapolation is accomplished by solving

Equation (14), together with (15) and (16), gives an ap-
ci, j 5 3cP1

2 3cP2
1 cP3

(12) proximation to cos g at the boundary point corresponding
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to the IB node. If cos g . cos gs then the interaction is by checking each node to see if its value of c changes sign
after each timestep. If it has, then the c(x, y, t) 5 0 contoursupersonic, else the interaction is subsonic.

All IB nodes, which have subsonic interaction, must have has passed the node, and linear interpolation in time is
used to record the burn time.the angle at the boundary point set to g 5 gc. Therefore

we need to solve
4. NUMERICAL STABILITY AND ACCURACY

cos gc 5 n̂b ? n̂s 5
ch

Ïc2
h 1 c2

j

. In this section, we investigate the stability restrictions
placed on the numerical algorithms described in Section
3. Accuracy of the algorithms is also examined by making

Solving for the derivative, ch, yields
comparisons with an exact solution. Since the numerical
algorithms are explicit in time, certain restrictions on the

ch 5 cos gc(c2
j csc2 gc)1/2. (17)

timestep are required to ensure numerical stability. As one
might expect, the hyperbolic operator will have a CFL type

Substitution of (15) and (16) into (17), and solving for restriction, c1 Dt/Dx # 1, while the ‘‘mostly parabolic’’
ci, j yields operator will have a restriction like c2 Dt/Dx2 # 1.

Since (7) is nonlinear, classical methods for determining
the stability of difference equations cannot be used. We
will first obtain the timestep restriction for the first-order

ci, j 5

cos gc((cP4
2 cP5

)2 csc2 gc)1/2

2 D2(cP2
2 4cP1

) 1 Dfi, j(2cP2
2 4cP1

)

3D2 2 2Dfi, j
. (18) hyperbolic part of the operator, consisting of (8) and (9),

by requiring that the scheme be monotone. Then a timestep
restriction for the second-order parabolic part of the opera-

Now, the values cP1
, cP2

, cP4
, cP5

appear on the right- tor, consisting of (8) with central differenced curvature
hand side of (18) in a nonlinear way. But this system of terms, will be found by a frozen coefficient analysis. Then,
nonlinear equations can be solved by viewing (18) as we will give the timestep required for a general Dn(k).
ci, j 5 F2(ci, j) and applying the same iterative technique as We briefly describe the timestep restriction for the
before (but with F1 replaced by F2.) Dn 5 DCJ case, with first-order accurate differences (9) and

no curvature dependence. The resulting PDE is hyperbolic3.4. Extensions to Three Dimensions
and has the property of being monotone. Monotonicity

Extensions of the LS method described in the previous implies the following (see [15] for details): If two sets of
sections to three dimensions is relatively straightforward. initial data are given (say in 2D), c1(x, y, t 5 0) and c2(x,
Since each term in the hyperbolic part is treated separately y, t 5 0), such that c2(x, y, t 5 0) $ c1(x, y, t 5 0) for all
(i.e., approximations to cx, cy, and cz), only an additional x and y, then for all time and space, c2(x, y, t) $ c1(x, y,
term in the approximation to u=cu will be needed. The t). A scheme which has this property is called a monotone
parabolic terms in the LS formulation in three dimensions method. Denote the solution of our difference equation
can again be calculated using second-order central differ- as cn11

i, j 5 H (cn
i, j), where the function H is given from (8)

ences, just as in two dimensions. Using the signed distance and (9). Obviously, H will depend on Dx and Dt. To ensure
function as initial conditions works in three dimensions as that a numerical scheme is monotone, we require that
well. Reflecting boundary conditions are simply applied in
three dimensions. Non-reflecting boundary conditions are ­

­cn
i, j

H (cn
k,l) $ 0also easily applied by using quadratic extrapolation in the

interface normal, n̂b, direction. The same methodology of
3.3.1 can be applied in 3D to enforce arbitrarily complex for all i, j, k, l.
boundaries. Carrying out all the possible forms of H (which depend

on the upwinding) gives the CFL restriction on a uni-
3.5. Creating a Burn Table form grid,

For a Dn 2 k relation such that Dn is always greater
than zero, any initial wave will only cross a node once. 2DCJ Dt

Dx
# 1 (19)

This follows from fact that c,t 5 2Dn(k)u=cu # 0 and is,
hence, monotonically decreasing in time. So, instead of

in 2D andsaving several c(x, y, t) arrays in time and taking contours
at c(x, y, t) 5 0, it is more efficient to create a burn table.
A burn table is just a record of wave arrival times as a Ï6·DCJ Dt

Dx
# 1 (20)

function of space, tb(x, y). This is accomplished numerically
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TABLE Iin 3D. In general, monotone schemes are limited to first-
order accuracy. But the first-order stability results can be Numerical Accuracy for an Expanding
used for the second-order scheme, since the second-order Circle with Dn 5 1 2 0.1 k
scheme reduces to first-order in non-smooth regions (al-

Dx 5 Dy E1 Rcthough the second-order scheme will not strictly be
monotone).

1/40 1.14 3 1023

Now, we consider the problem of determining the time- 1/80 3.26 3 1024 1.81
step restriction due only to the curvature dependent terms, 1/160 8.70 3 1025 1.91

1/320 2.16 3 1025 2.01i.e., (8), and central differenced curvature terms. Also as-
sume a linear dependence on the curvature. Then the level
set equation becomes

the convergence properties of the above algorithm by com-
parison with an exact solution.ct 5 a

cxxc
2
y 2 2cxycxcy 1 cyyc

2
x

c2
x 1 c2

y
,

The example problem will be an expanding quarter cir-
cle, whose center is at the origin and has with initial radius,

where a is a positive constant. Notice the above can be r 5 0.2. The numerical domain will be 0 # x # 1 and 0 #
rewritten as y # 1, with symmetry conditions at x 5 0 and y 5 0, and

non-reflective conditions at x 5 1 and y 5 1. We take
ct 5 a(a2cxx 2 2abcxy 1 b2cyy), (21) Dn 5 1 2 0.1 k, to test the second-order ENO/upwinding

scheme. For error analysis purposes we use the error mea-
where a2 1 b2 5 1. For the purposes of this discussion, we sured on the discrete L1 norm,
assume that a and b are constants and carry out the stan-
dard von Neumann stability analysis on the resulting linear E1 5 O

i, j
utexact

b 2 tnumerical
b u Dx Dy.

operator. The timestep restriction for the ‘‘linearized’’ cur-
vature dependent term is

The exact solution is obtained by noticing that the problem
is really one-dimensional, with the velocity of the front2 Dtuau

(Dx)2 # 1 being only a function of the radius (k 5 1/r), and integrating
the resulting ODE for the radius as a function of time.
This gives texact

b (x, y) 5 Ïx2 1 y2 2 0.2 1 0.1 log[(0.1 2in 2D and
Ïx2 1 y2)/(0.1 2 0.2)] (with Ïx2 1 y2 $ 0.2). Table I shows
the error, E1, for several Dx 5 Dy’s. The timestep was4 Dtuau

(Dx)2 # 1 taken to be 0.8 of the maximum allowed by (22). Also
shown is the calculated numerical order of accuracy, Rc.
Notice that second-order convergence is achieved.

in 3D. Thus, for the linear Dn(k) 5 DCJ 2 ak, the timestep
restriction is 5. COMPARISON OF DNS AND LEVEL SET

SOLUTION OF DSD
2DCJ Dt

Dx
1

2 Dtuau
(Dx)2 # 1 (22)

Here, we make comparisons of DSD theory with the
direct numerical simulation (DNS) of detonations. The
direct numerical simulations were carried out with the Losin 2D and
Alamos code CAVEAT [19]. CAVEAT is based on a
second-order Godunov-type shock capturing scheme,Ï6·DCJ Dt

Dx
1

4 Dtuau
(Dx)2 # 1 (23) which can be used in either Eulerian or Lagrangian mode.

Of particular interest is the location and subsequent dy-
namics of the detonation front. Next, we give the mathe-in 3D. The above timestep restriction can be used for a
matical formulation of the detonation model used in thenonlinear Dn(k), by replacing the constant, uau, in (22) or
DNS.(23), with max(u­a/­ku).

Next, we demonstrate that (8) and (10) with central
5.1. Compressible Reactive Euler Equations

differenced curvature dependent terms gives second-order
convergence. Although the truncation error of this scheme DSD and CAVEAT both have the reactive compressible

Euler equations as the basic model for studying detona-is O(Dt) 1 O((Dx)2), we expect second-order convergence
since for stability Dt Y (Dx)2 as Dx R 0. We demonstrate tions. These are
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Euler equations with a DNS. Unfortunately, information
like the detonation shock speed, curvature of the shock
front, etc. are not directly available from a DNS. But, since
the fluid begins to react just after it passes through the
inert shock (detonation front), and the reaction progress
is monotone, we may approximate the front location as
the level-curve (contour) l 5 0.01, say. And for problems
with quiescent upstream conditions, we know that the deto-
nation shock front will pass a fixed Eulerian point at most
only once. So then it is possible to create a DNS burn table,
by sweeping over the computational grid and searching for
grid points where the quantity (l 2 0.01) changes sign
from one time level to the next. Again, linear interpolation
in time can be used to get an accurate estimate of the burn
time, tDNS

b (x, y). Once we have this DNS burn table, im-
portant quantities such as shock speed, curvature, etc. may

FIG. 10. Dn(k) law for ideal equation of state model. be found. For example, the shock speed is given by Dn 5
1/u=tbu. The front locations are given simply as contours
of tDNS

b (x, y), and curvature of the shock front is given by
(6) with tb replacing c. All the problems we consider repre-Dr

Dt
1 r= ? u 5 0, sent difficult tests for DSD, since the deviation of Dn from

DCJ is large. Next, we give results from the DNS/DSD com-
parison.

r
Du
Dt

1 =p 5 0,

(24)
The first example is a ratestick problem. A ZND detona-

tion wave, initially at x 5 5 mm (and traveling to the right),
is used to initiate the unburnt explosive material locatedDe

Dt
1 p

D(1/r)
Dt

5 0,
at x $ 5 mm, 0 # y # 40 mm. An inert confining material
(with Q 5 0, ro 5 1.5 g/cc, c 5 1.4) is located in the regionDl

Dt
5 r(p, r, l), 40 mm # y # 45 mm. Perfect confinement (reflection) is

applied at y 5 0 mm. CAVEAT is run in Lagrangian mode
to handle this multi-material problem. Also, Dx 5 Dy 5with the ideal equation of state
0.2 mm, which puts roughly 20 cells in the reaction zone.
Wave fronts at various times, along with a spatial history

e 5
p

r(c 2 1)
2 Ql, of the detonation velocity are shown in Fig. 11a. Notice

the slowing of the detonation front at the inert interface,
y 5 40 mm. This sends a disturbance along the lead shockwhere Q is the heat of detonation, l is the reaction progress
(and through the subsonic portion of the reaction zone)variable (l 5 0 for unreacted material, and l 5 1 for
which propagates into the interior of the ratestick. This,completely reacted material), and r is the reaction rate.
in turn, affects the shape of the detonation wave and theFor our comparison, we take
axial propagation speed which is approximately 7.73
mm/es at 20 es.

r 5 2.5147 es21(1 2 l)1/2, Figure 11b shows the level set solution to the DSD prob-
lem with Dn(k) given in Fig. 10, and gs 5 gc5 54.78, and

as the rate law and use Q 5 4 mm2/es2, c 5 3 and upstream Dx 5 Dy 5 1 mm. The shock front is slowed since the
conditions po 5 1024 GPa, ro 5 2 g/cc and u 5 0. These angle boundary condition is applied at y 5 40 mm. Notice
parameters were chosen to mock up a condensed phase that the DSD solution calculates the front shapes well,
explosive with the ideal equation of state. These parame- compared to the DNS. It also predicts the angle at the
ters give DCJ 5 8 mm/es, and a steady-state 1D reaction- interface, and the axial velocity, which is 7.63 mm/es at 20
zone length of 4 mm. For this model, DSD theory gives a es. The discrepancies in the solution are due to the fact
Dn(k) relation shown in Fig. 10; see [1]. that the Dn 2 k relation is parabolic and reaches steady

state faster than the underlying hyperbolic Euler equa-
5.2. Numerical Examples and Comparisons

tions. This causes the DSD solution to lag the DNS by
roughly one reaction-zone length. If faster transients (i.e.,As stated previously, we can obtain the dynamics of

the detonation front by solving the compressible, reactive shock acceleration) are kept in the DSD theory, one recov-
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FIG. 11. Ratestick example: (a) direct numerical simulation; (b) detonation shock dynamics; (c) Huygens construction; (d) comparison of shock
front locations at 1, 5.4, 9.8, 14, 18.6, 23 es.

ers hyperbolicity, and more realistic finite wave speed dis- Figure 12b shows the DSD solution with a linear extrap-
olation for the converging branch (Dn 5 8 mm/es 2 (66.8turbances can be seen [22].

For comparison sake, the Huygens (Dn 5 8 mm/es) mm2/es)k). Here, gc 5 908 and gs 5 54.78. Notice how
well the DSD solution reproduces the shock fronts. Alsosolution is given in Fig. 11c. A comparison of wave fronts

is given in Fig. 11d. Obviously, the Huygens solution does shown is the Huygens solution in Fig. 12c and the compari-
son of wave fronts in Fig. 12d.not predict any velocity deficit, nor does it calculate the

correct wave shapes. The final comparison is a diverging channel problem
with perfect wall confinement. This is the same as theThe second example is a converging channel problem

with perfect confinement along the walls. A ZND detona- previous problem, but the channel diverges at 458. When
the detonation shock diffracts around the corner, a rarefac-tion wave, again located initially at x 5 5 mm, encounters

a 208 ramp. Once the detonation reaches the ramp, a com- tion wave is propagated out from the wall, and the detona-
tion velocity decreases as a result. See Fig. 13a. Notice,pressive wave is reflected downwards, and the detonation

velocity increases as a result. See Fig. 12a for wave front at about 19 es, the curvature of the detonation front is
decreasing and the front begins to accelerate.and detonation velocity plots. Note that the detonation

front is broadly curved, and no ‘‘Mach’’-like reflection ap- Figure 13b shows the DSD solution. Notice, again, how
well the DSD results compare with the DNS. Figure 13cpears.
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FIG. 12. Converging channel example: (a) direct numerical simulation; (b) detonation shock dynamics; (c) Huygens construction; (d) comparison
of shock front locations at 1, 5.8, 10.6, 15.4, 20.2, 25 es.

shows the Huygens result. A comparison of shock fronts applications. In large measure, the boundary conditions
force the evolution of the level curve in our DSD problems.is given in figure 13d.

To uniquely identify the physical shock, requires that
5.3. 3D Seven-Point Detonation in PBX9502 neighboring level curves not cross each other in a finite

time. A crossing of the level curves leads to non-uniquenessWe demonstrate the ability of a level set formulation
in Dn (x, y, t). Then the problem of the propagation of theto easily handle 3D multiple front interaction with the
level curves in x, y-space, described by (5), is not uniquelyfollowing example. We use the Dn(k) relation from Fig. 3,
posed. In this section we discuss three topics related to em-in a cube with length 64 mm. Initially, there are seven
bedding.spherically expanding detonations, six in a hexagonal pat-

In Section 6.2 we describe some of the properties of thetern, and one in the center. See Fig. 14. The spherical
level-set equation and show how DSD front theory deriveddetonations merge, then intersect the edges of the cube,
in [8] is contained in the LS method formulation. Thisand eventually burn out of the domain.
discussion is focused on exposing the mathematical proper-
ties of the multivariable, second-order spatial operator that6. EMBEDDING AND RELATIVE MOTION OF THE
appears in the LS PDE. The operator type (i.e., whetherLEVEL-SURFACE CURVES
it is elliptic or parabolic) is sensitive to the spatial direction.

Here we discuss the embedding of a level curve of inter- In turn, this defines the operator type of the fully time-
est (the shock) and the dynamics of the relative motion of dependent LS PDE (i.e., whether it is parabolic or hyper-
the level curves in the same family. We do this to develop bolic). This discussion leads naturally to our demonstrating
insight into (1) why the embedding idea of the LS method how DSD front theory, a parabolic theory, is contained in
algorithm works so well for a monotonic Dn(k) relation the LS formulation of the problem.
and (2) to point out restrictions that arise when trying to In Section 6.3 we derive an auxiliary PDE for the level-

curve spacing. This PDE is used to study the motion ofextend the LS method to include boundary conditions at
edges. Boundaries are nearly always present in explosive level curves relative to one another. We use u=cu21 to
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FIG. 13. Diverging channel example: (a) direct numerical simulation; (b) detonation shock dynamics; (c) Huygens construction; (d) comparison
of shock front locations at 1, 5.4, 9.8, 14, 18.6, 23 es.

measure the local relative spacing of the level curves. A malization is used to inhibit the formation of large gradi-
ents in c(x, y, t), which otherwise occur and destroy thequalitatively interpretation for this choice is that regions

of large gradients in the smooth level-set function corre- solution quality. Unlike their work, we use d(x, y, t) as a
passive observer of the evolution of c(x, y, t). In a seriesspond to a high-density of curves (i.e., closely spaced level

curves). This at least motivates the name ‘‘distance func- of papers by Evans and Spruck [10, 11] the evolution of
the level-curve spacing, for problems, where Dn(k) 5 2k,tion’’ for the quantity d(x, y, t) 5 u=cu21 and why we derive

an auxiliary PDE for d. is studied with a ‘‘distance function’’ of a different type.
Their distance function d̂ is also a passive variable. It mea-Our use of a distance function d(x, y, t), shares both

similarities and differences with previous work. Sussman, sures the signed, minimum normal distance from a given
level curve to some nearby point fixed in space. PointsSmereka, and Osher [9] introduced u=(c)u as a ‘‘distance

function’’ with which to measure the spacing of level ahead of the curve are signed positively and those behind
with a negative sign. In our earlier discussions, we usedcurves. Sussman et al. use (1 2 u=cu) to drive a continual

renormalization of c(x, y, t) such that u=cu 5 1. This renor- this same distance function to set up initial data for c(x,
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gradient vector, =c. Refer to Fig. 15 for a description of
the coordinate geometry. Given a level curve c(x, y, t) 5
const the instantaneous normal and tangent vectors at a
fixed Eulerian point are obtained by taking the total deriv-
ative

cx dx 1 cy dy 5 0, (25)

from which we get the slope of a level curve

dy
dx

5 2
cx

cy
5 2tan(u). (26)

The angle u(x, y, t) is defined as the angle between the
shock normal and the y-axis, where u(x, y, t) is increasing

FIG. 14. Seven-point detonation, shock front locations at 0, 3, 6 es.
in the clockwise direction. In terms of this angle, the normal
and tangent to a level curve are

y, t 5 0). By differencing two such oppositely signed dis- n̂ ; =c

u=cu
5 sin(u)ı̂ 1 cos(u)Ê̂,

(27)
tances, the separation of two level curves is followed with
a variable w 5 d̂1 2 d̂2. The evolution equation they get
for w is similar in form to the one we derive. In spirit at t̂ 5

(cyı̂ 2 cxÊ̂)
u=cu

5 cos(u)ı̂ 2 sin(u)Ê̂,
least, our discussion follows Evans and Spruck [10]. The
advantage of u=cu21 as a distance function in our applica-

from which the directional derivatives normal and tangenttion, rests with the ease with which DSD boundary condi-
to a level curve aretions can be expressed with this d.

Our application is the first to use level-set methods for
problems with real boundary conditions (i.e., not simply n̂ ? =( ) 5 sin(u)( )x 1 cos(u)( )y ,

(28)using continuation conditions). In Section 6.4, we use this
t̂ ? =( ) 5 cos(u)( )x 2 sin(u)( )y .auxiliary PDE for d(x, y, t) to demonstrate how DSD-

type boundary conditions influence the spacing of the level
The equations for the auxiliary variables that we seek arecurves near boundaries. To illustrate the issues, we con-
obtained by taking the gradient of Eq. (26)sider the most difficult boundary situation vı̀s-a-vı̀s the

convergence of level curves; the expansion (i.e., diffrac-
tion) of detonation around a corner (see Fig. (16)). Like
the LS equation, the d-equation is of mixed parabolic/
hyperbolic type. To simplify the analysis of this system,
we introduce a small amount of additional ‘‘diffusion’’ to
the d-equation, to obtain a strictly parabolic equation for
a ‘‘viscosity’’ subsolution (i.e., an equation for a lower
bound on d). Using the existing literature on parabolic
PDEs, we show via a maximum principal that d(x, y, t)
remains bounded away from zero.

We begin our discussion by dealing with some simple
mathematical preliminaries.

6.1. Preliminary Calculations

In this section we introduce the normal and tangent
vectors to a level curve at a fixed Eulerian point and the

FIG. 15. Geometry of the space of level curves, showing the definition
corresponding directional derivatives. We then derive two of the local normal and tangent vectors and shock normal angle u(x, y,
auxiliary PDEs by taking the gradient of the LS equation t). The normal distance between two ‘‘neighboring’’ level curves Co and

Co 1 dC is d̃(x, y, t).to obtain equations for the magnitude and phase of the
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=cx 5 =cy tan(u) 1 cy sec2(u)=u (29)
A 5 I 2

1
u=cu2 S c2

x cxcy

cxcy c2
y

D
(38)and subsequently constructing

t̂ ? =(u=cu) 5 u=cun̂ ? =(u) (30) 5 S 1 2 sin2(u) 2sin(u) cos(u)

2sin(u) cos(u) 1 2 cos2(u)
D.

and the gradient of the level-set equation
Now for all real vectors j 5 (j1 , j2) it follows that since
A is real and symmetric that jT ? A j $ 0, that is,n̂(u=cu)t 1 t̂u=cu(u)t 1 u=cu=(Dn) 1 Dn=(u=cu) 5 0, (31)

where we have used O2
i, j51

aijjijj 5
(j1cy 2 j2cx)2

u=cu2
$ 0 (39)

=c 5 n̂u=cu, (n̂)t 5 t̂(u)t . (32)

is positive semidefinite for j ? 0. From the theory of partialEquation (31) is a vector equation. The tangential compo-
differential equations [7], it follows that L ( ) is not strictlynent yields an equation for the evolution of the shock-
elliptic and therefore Eq. (36) is not uniformly parabolic.normal angle, u,
From Eq. (39), we see that L ( ) is parabolic (i.e., Eq. (39)
is zero) in the direction normal to the level curve, y 2

(u)t 1 Dnn̂ ? =(u) 5 2t̂ ? =(Dn), (33)
ỹ 5 (x 2 x̃) cot(u), where (x̃, ỹ) denotes an Eulerian point
on the level curve. Parabolicity of Eq. (36) requires that

while the normal component yields an equation for the Eq. (39) be positive definite. Thus Eq. (36) is of a hybrid
evolution of u=cu, type and is only parabolic along level curves. Further, when

a is identically zero, Eq. (36) becomes strictly hyperbolic,
(u=cu)t 1 Dnn̂ ? =(u=cu) 5 2u=cun̂ ? =(Dn). (34) the eikonal equation of geometrical optics. Thus we see

that the curvature-related terms, those proportional to a,
The shock normal angle, u(x, y, t), and u=cu represent the describe effects that propagate only along level curves.
phase and magnitude of =c. They describe how the local Turning to Eq. (33) for the evolution of u(x, y, t), we
orientation and ‘‘slope’’ of the level surface is changing. can now understand how our earlier DSD work [8], which
In the next subsections, we use these equations to show obtained a front theory for the detonation shock that is
how the level-set formulation relates to our previous de- parabolic, is embedded in the LS formulation. To see this,
scription of DSD theory and how the spacing between we examine the connections that exist between the DSD
level curves evolves. We restrict our developments to a front equation, boundary conditions, and Eq. (36).
linear Dn(k)-law, The DSD boundary condition is a condition on the angle

u. From the orthogonality of the normal n̂ and tangent t̂
Dn(k) 5 DCJ 2 ak, (35) vectors, Eqs. (27)–(28), it follows that at every point in

space t ? =(c) 5 0 and, consequently,
where a is a positive constant.

cx cos(u) 2 cy sin(u) 5 0. (40)6.2. Properties of the Level Set Equation

Inserting Eq. (35) for Dn(k) in Eq. (5), obtains If u is prescribed at the edge as in DSD theory, Eq. (40)
is then the LS boundary condition for the DSD problem.

ct 1 DCJn̂ ? =(c) 2 aL (c) 5 0, (36) The equation for the evolution of the shock-normal
angle u is

where L (c) is the curvature and the operator L is given by

(u)t 1 Dnn̂ ? =(u) 5 2t̂ ? =(Dn). (41)
L ( ) ; a11

­2

­x2 1 2a12
­2

­x­y
1 a22

­2

­y2 ,
Since Dn(k) is a linear function and k is given by

5 =2( ) 2 n̂ ? =(n̂ ? =( )) 1 n̂ ? =(u)(t̂ ? =( )),
(37)

k 5 t̂ ? =(u), (42)5 t̂ ? =(t̂ ? =( )) 1 t̂ ? =(u)(n̂ ? =( )),

and the coefficient aij are the elements of the real, symmet- from Eqs. (28), (42) it is clear that Eq. (41) contains only
u as a dependent variable which with the boundary condi-ric array
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tion on u constitutes a totally self-contained, nonlinear n̂ ? =(Dn) 5 2an̂ ? =(t̂ ? =(u)), (48)
problem for u,

which on using the commutation rule
(u)t 1 Dnn̂ ? =(u) 5 at̂ ? =(t̂ ? =d(u)). (43)

n̂ ? =(t̂ ? =(u)) 5 t̂ ? =(n̂ ? =(u)) 2 (n̂ ? =(u))2

2 (t̂ ? =(u))2,
(49)

Using Eq. (37), we can also write Eq. (43) as

Eqs. (30), (47), and the definition of level-curve curvature,
(u)t 1 DCJn̂ ? =(u) 5 aL (u). (44) can be written as

Equation (43) is equivalent to the parabolic PDE, de-
rived in [8] that describes the evolving shape of the detona- n̂ ? =(Dn) 5 a St̂ ? = S1

d
t̂ ? =(d)D

(50)tion front. The operator on the left corresponds to the rate
of change of u as one travels with the level curve as it

1 S1
d

t̂ ? =(d)D2

1 k2Dexpands normal to itself. These changes are driven by the
variations in u that ‘‘diffuse’’ along the level curve as con-
trolled by at̂ ? =(t̂ ? =(u)). Thus our DSD model, for which

and then simplified tothe variations in the wavefront u depend, only information
from the front is contained in Eq. (5). Next we show that
u=cu21 is related to the local spacing between the level

n̂ ? =(Dn) 5 a S1
d

t̂ ? =(t̂ ? =(d)) 1 k2D. (51)curves.

6.3. The Distance Function Substituting Eqs. (51), (47) into Eq. (34) then yields

To track how the distance between nearby level curves
(d)t 1 Dnn̂ ? =(d) 5 a(k2 d 1 t̂ ? =(t̂ ? =(d))). (52)evolves, we introduce a measure of this distance called the

‘‘distance’’ function, d(x, y, t). Referring to Fig. 15, two
Equation (52) is a linear PDE in d(x, y, t) that can benearby level curves are pictured whose LS values differ
used to follow the evolution of the distance between levelby the small amount dC. Pick a point on the level curve
curves. Although the coefficients of this equation dependc(x, y, t) 5 Co at time t, labeled with x 5 x̃ and y 5 ỹ.
on the solution of the LS equation, properties like theThen express c on the level curve c 5 Co 1 dC as an
sign of the term k2 d and the sign and magnitude of theexpansion about x̃, ỹ,
coefficients appearing in t̂ ? =(t̂ ? =( )) (all of which are
bounded by 21 and 1) are known. Because these coeffi-

c(x̃, ỹ, t) 1 =(c) ? dr 5 Co 1 dC. (45)
cients have ‘‘nice’’ properties, we are able to get general
results about the solution without actually solving the par-

Therefore, it follows that the normal distance, d̃(x̃, ỹ, t) ent LS equation.
from x̃, ỹ on curve Co to curve Co 1 dC, is given by The boundary condition for the d-equation follows di-

rectly from Eq. (30) by replacing u=cu by 1/d,

n̂ ? dr 5
dC

u=c(x̃, ỹ, t)u
. (46)

t̂ ? =(d) 1 dn̂ ? =(u) 5 0. (53)

Recall that for our problem, n̂ ? =(u) is prescribed at theIf we assume that initially the curves are labeled by their
edge by the DSD boundary condition.separation, then dC 5 (n̂ ? dr)o, and u=cu21 is the scaled

Equation (53) is of the form of a linear, Dirichlet–distance between nearby curves,
Neumann boundary condition; a standard form of the
boundary condition for an equation like Eq. (52). This

d ; u=cu21. (47) allows us to get important, general results concerning how
d(x, y, t) responds to DSD boundary conditions.

We conclude this section by describing how the variousWe refer to the d(x, y, t) defined by Eq. (47) as the ‘‘dis-
tance’’ function. Returning to Eq. (34), we find that it terms appearing in Eq. (52) contribute to changing d(x, y,

t). For the Huygens problem, for which a 5 0 and Dn 5describes the evolution of this distance function. Recogniz-
ing that Dn 5 DCJ 2 ak and k 5 t̂ ? =(u) allows us to DCJ, d(x, y, t) is simply advected through space at the

constant speed DCJ. Thus the spacing of the level curvesrewrite the right-hand side of Eq. (34) as
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stays fixed. Since Dn is known a priori, there are really no
issues concerning embedding here.

When a . 0, two terms drive changes in d(x, y, t). The
term (k2 d) acts as a ‘‘source’’ that leads to increases in
d(x, y, t). The term (t̂ ? =(t̂ ? =(d))) serves to ‘‘diffuse’’ any
concentrations of d(x, y, t) that develop, out in the direction
of the level curve. This term acts so as to flatten any varia-
tions in d(x, y, t). If for the moment we consider problems
for which c(x, y, 0) depends only on r 5 Ïx2 1 y2 and not
on u, then the ‘‘diffusive’’ term disappears and d(x, y, t)
increases for problems in which either the level curves
converge on r 5 0 or expand outwards. When symmetry
is lost, the ‘‘diffusive’’ term acts to diminish the action of
(k2 d) by spreading concentrations of d(x, y, t); it does not

FIG. 16. The diverging channel problem with an infinite confinementact as a sink.
wall. The angle boundary condition requires that the level curves beIn the next section, we discuss the mathematical proper-
normal to the wall.

ties of Eq. (52) and how boundary conditions influence
d(x, y, t). For this purpose, we adopt a Cartesian coordinate
representation and render the coefficients in Eq. (52) ex-

(n̂ ? =(u))edge 5 r21
c . 0, (57)plicit,

(d)t 1 DCJn̂ ? =(d) 5 a(k2 d 1 L (d)), (54) in the region where uedge is changing and zero elsewhere.
From Eq. (57) it follows that (a t̂ ? =(k)/Dn)edge $ 0 for this
problem. Therefore, if (a t̂ ? =(k))edge $ 0 then (Dn)edge $where L ( ) is given by Eqs. (37)–(38).
0, while if (at̂ ? =(k))edge , 0 then (Dn)edge , 0. In any

6.4. DSD Boundary Conditions and Embedding event, (Dn)edge remains bounded so that k remains
bounded. Consequently, the ‘‘source’’ term (k2 d) thatThe principal DSD boundary condition is the angle
appears in Eqs. (52) and (54) will remain bounded.boundary condition; the angle between the outward nor-

The analysis of the PDE for the distance function, Eq.mals to the shock and the HE boundary is constant. It
(54), and the boundary condition, Eq. (53), for the problemfollows from the distance function boundary condition of
of Fig. 16, is most easily carried forward by first modifyingEq. (53),
Eq. (54). The change we make is to take the operator
L ( ), which is not strictly elliptic, and make it so. Followingt̂ ? =(d) 1 dn̂ ? =(u) 5 0, (55)
Evans and Spruck [10], we make L ( ) elliptic by adding
a small term «2 to u=cu2 to get a slightly different operatorthat in regions where n̂ ? =(u) ? 0, the distance function

can have a nontrivial gradient at the boundary. In locations
where u experiences rapid changes along the boundary, L «( ) 5 a«

11
­2

­x2 1 2a«
12

­2

­x­y
1 a«

22
­2

­y2 , (58)
like where the confinement changes or the explosive has
a corner, either t̂ ? =(d) can become large or d(x, y, t) could

wherego to zero, or both. To illustrate the most difficult boundary
issue that confronts us, we consider the diverging channel
problem, with a finite radius of curvature transition section,

A « 5 A 1 S «2

u=cu2 1 «2D (I 2 A ) (59)
shown in Fig. 16.

For this problem, the DSD boundary condition sets the
angle between the edge and the level curves to 908. If we and where
construct d(x, y, 0) so that it satisfies this edge boundary
condition initially, then (u(x, y, t))edge 5 (u(x, y, 0))edge and

L «( ) 5 L ( ) 1 S «2

u=cu2 1 «2D (=2( ) 2 L ( )). (60)the time derivative in Eq. (43) is zero along the edge, so that

From Eq. (37) we see that =2( ) 2 L ( ) is the second-Sa t̂ ? =(k)
Dn

D
edge

5 (n̂ ? =(u))edge . (56)
order directional derivative in the normal direction. Recall
that L ( ) corresponds to diffusion only along level curves.
Think of the «2 as adding a small amount of ‘‘diffusion’’For the problem shown in Fig. (16),
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to Eq. (54) in the direction normal to the level curve. Thus, even though we expect that d(x, y, t) becomes small
at the sharp corner that results when rc R 0, it follows thatThis allows d(x, y, t) to ‘‘diffuse’’ in all directions, which

contributes to further decreases in d. Thus we see that the d(x, y, t) ? 0. Although problems can be expected with
numerical solution algorithms when d(x, y, t) becomesO(«2) term in Eq. (60) serves to regularize the parabolic

character of L ( ) in the direction normal to the level small due to grid resolution effects, the mathematical de-
scription of d near the boundaries remains well posed.curves, thereby producing a strictly elliptic operator,
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where e is a positive constant.
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